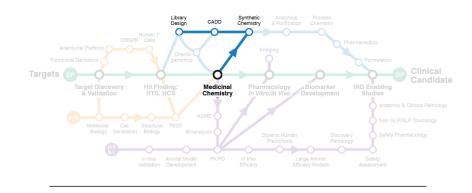

An Ontology for Medicinal Chemistry

Ph.D. Defence

Carmen S. Chui

December 14, 2018


Drug Design & Discovery Roadmap from [Cha17]

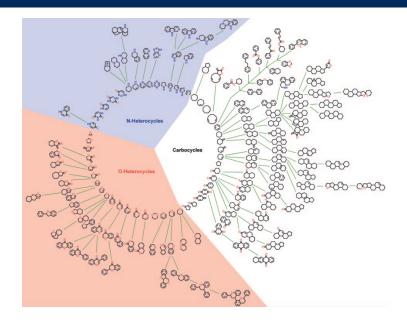
Drug Design & Discovery Roadmap from [Cha17]

Discovery Pathway

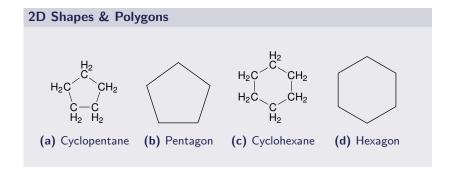
Chemistry

Biology/Discovery Technologies

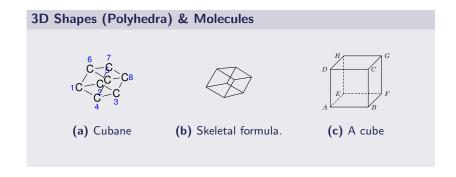
DMPK/Pharmacology/Safety/In Vivo Models


Research Objective

Objective


Existing work in cheminformatics discusses the notion of 'chemical space' to describe all possible organic molecules to be considered when searching for new drugs [RA12].

We want to provide **ontological foundations for chemical space**, where the central idea is that chemical space is characterized by the *shape* and *structure* of molecules.


Chemical Space: Scaffold Tree in [Koc+05]

Motivations: What do we mean by shape?

Motivations: What do we mean by shape?

Current Approaches to Represent Molecular Shape

Chemical name [Nat15]:

Morphine; Morphinum; Morphia; Morphin

IUPAC name:

 $(4R,4aR,7S,7aR,12bS)-3-methyl-2,4,4a,7,7a,13-hexahydro-1H-4,12-methanobenzofuro\ [3,2-e]\ is oquinoline-7,9-diol$

SMILES:

CN1CC [C@] 23C4=C5C=CC(0)=C40 [C@H] 2 [C@@H] (0) C=C [C@H] 3 [C@H] 1C5

InChI identifier:

InChI=1S/C17H19N03/c1-18-7-6-17-10-3-5-13(20)16(17)21-15-12(19)4-2-9 (14(15)17)8-11(10)18/h2-5,10-11,13,16,19-20H,6-8H2,1H3/t10-,11+,13-,16-,17-/m0/s1
InChI key: BQJCRHHNABKAKU-KBQPJGBKSA-N

Overview of Contributions

To navigate and characterize chemical space, the following contributions have been made:

- C-1 Requirements for the Ontology & Its Models
- C-2 Axiomatization & Verification of MoSt
- C-3 Techniques for Decomposing & Re-Composing Molecules
- C-4 Drug Design as Model Construction
- C-5 Model-Theoretic Search Techniques

C-1 Requirements for the Ontology & Its Models

Competency questions guided the overall design of the MOlecular Structure ontology (MoSt)

Requirements & Semantic Conditions for Representing Shape

- Molecules must be represented as graphs
- Components of molecules must be elements of the domain
- Attachments between functional groups (spiro, tether, fusion) must also be represented

Requirements for the Models of the Ontology

- 1-to-1 correspondence of models of MoSt with molecules
- Intended models of the ontology are molecules
- Unintended models of the ontology are not molecules

C-1 Requirements for the Ontology & Its Models

Competency questions guided the overall design of the MOlecular Structure ontology (MoSt)

Requirements & Semantic Conditions for Representing Shape

- Molecules must be represented as graphs
- Components of molecules must be elements of the domain
- Attachments between functional groups (spiro, tether, fusion) must also be represented

Requirements for the Models of the Ontology

- 1-to-1 correspondence of models of MoSt with molecules
- Intended models of the ontology are molecules
- Unintended models of the ontology are not molecules

C-1 Requirements for the Ontology & Its Models

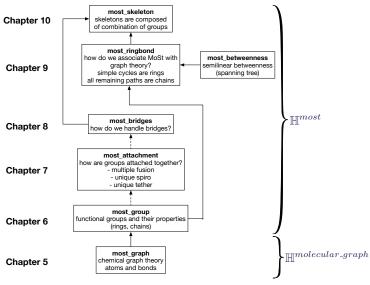
Competency questions guided the overall design of the MOlecular Structure ontology (MoSt)

Requirements & Semantic Conditions for Representing Shape

- Molecules must be represented as graphs
- Components of molecules must be elements of the domain
- Attachments between functional groups (spiro, tether, fusion) must also be represented

Requirements for the Models of the Ontology

- 1-to-1 correspondence of models of MoSt with molecules
- Intended models of the ontology are molecules
- Unintended models of the ontology are not molecules


C-2 Axiomatization & Verification of MoSt

Conservative

Extension

Legend

We present a first-order axiomatization of MoSt, organized as such:

Non-Conservative.

Extension

Definitional___

Extension

Module

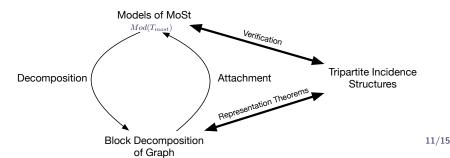
- Verification results show that models of MoSt are synonymous with tripartite incidence structures found in COLORE
 - This gives us a complete classification of all the models of MoSt
- Because of this synonymy, we can take advantage of techniques for the construction and decomposition of models of the ontology
- We inherit techniques for building models from the mathematical incidence theories

We present:

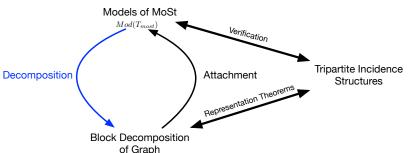
- Techniques for decomposing molecules into their primitive functional groups with a **Decomposition Theorem**

We present:

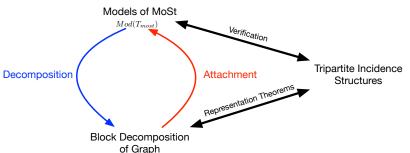
- Techniques for decomposing molecules into their primitive functional groups with a **Decomposition Theorem**
- Techniques for (re)composing molecules from primitive functional groups with an Attachment Theorem

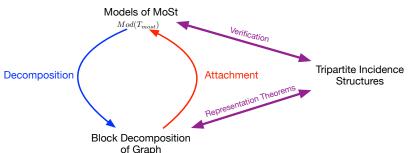

We present:

- Techniques for decomposing molecules into their primitive functional groups with a **Decomposition Theorem**
- Techniques for (re)composing molecules from primitive functional groups with an Attachment Theorem
- Procedures for decomposing the underlying molecular graph into its building blocks


C-4

- A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components
- From these components, we can re-compose the graph via the attachment relationships
- Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification


- A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components
- From these components, we can re-compose the graph via the attachment relationships
- Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification


- A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components
- From these components, we can re-compose the graph via the attachment relationships
- Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification

- A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components
- From these components, we can re-compose the graph via the attachment relationships
- Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification

- A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components
- From these components, we can re-compose the graph via the attachment relationships
- Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification

Navigating Chemical Space \simeq Constraint Satisfaction Programming

Queries against the knowledge base using MoSt helps us navigate the search space:

molecular description of \mathcal{M} is $Th(\mathcal{M})$

a sentence $\in \Sigma(MoSt)$

Example: Existential Queries

Find a molecule that contains at least one ring.

$$KB \models \exists x \ ring(x)$$

Find a molecule that contains at least one fork and at least one ring.

$$KB \models \exists x \exists y \ (x \neq y) \land fork(x) \land ring(y)$$

• Find a molecule that contains a ring that is fused to another ring.

$$KB \models \exists x \exists y \ (x \neq y) \land ring(x) \land ring(y) \land fused(x, y)$$

Example: Universal Queries

All groups in the molecule are rings.

$$KB \models \forall x \ group(x) \supset ring(x)$$

All groups in the molecule are fused.

$$KB \models \forall x \forall y \ group(x) \land group(y) \land (x \neq y) \land fused(x, y)$$

All groups in the molecule are tethered.

$$KB \models \forall x \forall y \ group(x) \land group(y) \land (x \neq y) \land tethered(x, y)$$

Example: Composite Queries

• All groups in the molecule are fused to some other ring.

$$\textit{KB} \models \forall x \: \textit{group}(x) \supset \textit{ring}(x) \land \exists y \: \textit{ring}(y) \land (x \neq y) \land \textit{fused}(x,y)$$

All groups are tethered to at least one other group.

$$KB \models \forall x \ group(x) \land \exists y \ group(y) \land tether(x, y) \land (x \neq y)$$

- ✓ Requirements for a molecular structure ontology with C-1
- √ Design and Verification of MoSt with C-2
- ✓ New Techniques for Designing Molecules via Model Construction with C-3, C-4
- √ An Alternative Approach to Navigating Chemical Space with C-5

- ✓ Requirements for a molecular structure ontology with C-1
- ✓ Design and Verification of MoSt with C-2
- √ New Techniques for Designing Molecules via Model Construction
 with C-3, C-4
- ✓ An Alternative Approach to Navigating Chemical Space with C-5

- ✓ Requirements for a molecular structure ontology with C-1
- √ Design and Verification of MoSt with C-2
- √ New Techniques for Designing Molecules via Model Construction with C-3, C-4
- ✓ An Alternative Approach to Navigating Chemical Space with C-5

- ✓ Requirements for a molecular structure ontology with C-1
- ✓ Design and Verification of MoSt with C-2
- ✓ New Techniques for Designing Molecules via Model Construction with C-3, C-4
- ✓ An Alternative Approach to Navigating Chemical Space with C-5

- ✓ Requirements for a molecular structure ontology with C-1
- ✓ Design and Verification of MoSt with C-2
- ✓ New Techniques for Designing Molecules via Model Construction with C-3, C-4
- ✓ An Alternative Approach to Navigating Chemical Space with C-5

Open Questions & Future Work

- Decidability of MoSt
- Mereology on Skeletons
- Molecular Reactions Ontology (MoRe): A Process Ontology
- Reasoning About Molecules (RoMe): A Software Environment
- Integration with (Cheminformatics) Software Tools & Query Languages

Thank You!

Any Questions?

References & Additional Links #1

Charles River Laboratories, Inc. The Benefits of Outsourcing Drug Discovery to an End-to-End CRO. May 1, 2017. URL: https://www.criver.com/resources/benefits-outsourcing-drug-discovery-end-end-cro.

Marcus A. Koch et al. "Charting biologically relevant chemical space: A structural classification of natural products (SCONP)". In: Proceedings of the National Academy of Sciences of the United States of America 102.48 (2005), pp. 17272–17277. DOI: 10.1073/pnas.0503647102. URL: http:

//www.pnas.org/content/102/48/17272.abstract.

References & Additional Links #2

National Center for Biotechnology Information. *PubChem Compound Database - Morphine (CID=5288826)*. 2015. URL: https:

//pubchem.ncbi.nlm.nih.gov/compound/5288826.

Jean-Louis Reymond and Mahendra Awale. "Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database". In: ACS Chemical Neuroscience 3.9 (2012). PMID: 23019491, pp. 649–657. URL: https://doi.org/10.1021/cn3000422%20https://doi.org/10.1021/cn3000422.

Vladsinger. *Isomerism*. Dec. 1, 2018. URL: https://commons.wikimedia.org/wiki/File:Isomerism.svg.

Why Topological Structure?

- Chemical spaces and the scaffold tree approach do not talk about the full geometry (such as stereochemistry pertaining to isomers, bond angles, etc.) since only the 'core' is examined
- Instead, we wanted the ontology to be geared toward supporting the scaffold tree approach

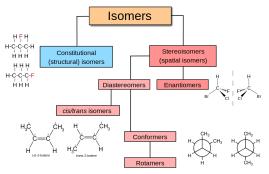
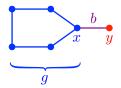
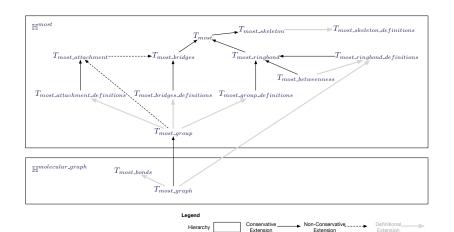
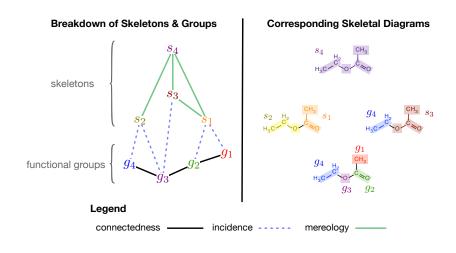



Figure 2: Image from [Vla18]

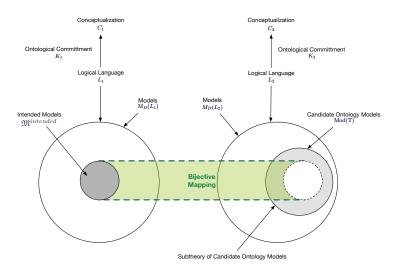
Why An Ontology?

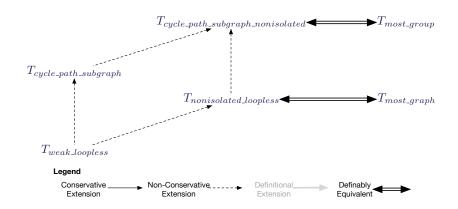

- Additional insights using axioms that describe commonsense intuitions about structure and relationships between the various attachments and elements of the domain
 - Example: For a fork atom that is in a group, there exists an atom and a bond that is not part of that group.

$$\forall x \forall g \ (fork(x) \land mol(x,g) \land group(g)) \supset \exists b \exists y \ atom(y) \land bond(b) \land mol(x,b) \land mol(y,b) \land \neg mol(y,g).$$



 Make use of available first-order reasoners - not much reasoning can be done with class/subclass relationships (in OWL)


Organization of MoSt


Skeletons

Verification & Bijective Mappings

Verification Theories & Their Relationships

