An Ontology for Medicinal Chemistry Ph.D. Defence Carmen S. Chui March 26, 2019 SGS Room 111 #### Drug Design & Discovery Roadmap from [Cha17] #### Drug Design & Discovery Roadmap from [Cha17] #### Research Objective #### **Objective** Existing work in cheminformatics discusses the notion of 'chemical space' to describe all possible organic molecules to be considered when searching for new drugs [RA12]. We want to provide **ontological foundations for chemical space**, where the central idea is that chemical space is characterized by the *shape* and *structure* of molecules. #### Chemical Space: Scaffold Tree in [Koc+05] Figure 1: Scaffold Tree for Natural Products (Figure 1 in [Koc+05]) #### What do we mean by shape? Figure 2: 2D Shapes (Polygons) & Molecules Figure 3: 3D Shapes (Polyhedra) & Molecules #### Example: Morphine $(C_{17}H_{19}NO_3)$ Figure 4: Morphine $(C_{17}H_{19}NO_3)$ #### **Current Approaches to Represent Molecular Shape** #### Chemical name [Nat15]: Morphine; Morphinum; Morphia; Morphin #### IUPAC name: $(4R,4aR,7S,7aR,12bS)-3-methyl-2,4,4a,7,7a,13-hexahydro-1H-4,12-methanobenzofuro\ [3,2-e]\ isoquinoline-7,9-diol$ #### SMILES: CN1CC[C@]23C4=C5C=CC(0)=C40[C@H]2[C@@H](0)C=C[C@H]3[C@H]1C5 #### InChI identifier: InChI=1S/C17H19N03/c1-18-7-6-17-10-3-5-13(20)16(17)21-15-12(19)4-2-9 (14(15)17)8-11(10)18/h2-5,10-11,13,16,19-20H,6-8H2,1H3/t10-,11+,13-,16-,17-/m0/s1 InChI key: BQJCRHHNABKAKU-KBQPJGBKSA-N #### **Overview of Contributions** To navigate and characterize chemical space, the following **contributions** have been made: - 1. Design, Verification, and Validation of MoSt - 2. New Techniques for Designing Molecules via Model Construction - 3. An Alternative Approach to Navigating Chemical Space ### 1. Design, Verification, and Validation of MoSt #### Requirements for the Ontology & Its Models #### Requirements & Semantic Conditions for Representing Shape - Molecules must be represented as graphs - Components of molecules must be elements of the domain - Attachments between functional groups (spiro, tether, fusion) must also be represented #### Requirements for the Models of the Ontology - 1-to-1 correspondence of models of MoSt with molecules - Intended models of the ontology are molecules - Unintended models of the ontology are not molecules #### **Axiomatization of MoSt** Figure 5: Axiomatization of MoSt (by chapter) #### Verification of MoSt - Verification results show that models of MoSt are synonymous with tripartite incidence structures found in COLORE - We inherit techniques for building and decomposing models from the mathematical incidence theories Figure 6: Complete classification of models of MoSt through verification. #### **Example of Axiomatization** **Figure 7:** Structure of morphine $(C_{17}H_{19}NO_3)$ #### **Contribution Summary** - Identified requirements for a molecular structure ontology - Provided an axiomatization of a molecular structure ontology (MoSt) - Verified and validated the ontology with respect to its intended models # 2. New Techniques for Designing Molecules via Model Construction #### Leveraging the Ontology in Drug Design #### The ontology plays dual roles: - Verification shows that models correspond to graphs in geometry: we can construct models of MoSt for drug design. However, simply having the ontology itself does not tell us how we can use it for drug design. - 2. We can exploit graph-theoretic properties of the models to come up with new model construction techniques. - A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components - From these components, we can re-compose the graph via the attachment relationships - Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification - A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components - From these components, we can re-compose the graph via the attachment relationships - Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification - A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components - From these components, we can re-compose the graph via the attachment relationships - Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification - A model of MoSt, Mod(T_{most}), can be decomposed into 2-connected graph components - From these components, we can re-compose the graph via the attachment relationships - Models of MoSt and the block decompositions of the underlying molecular graph are synonymous with the tripartite incidence structures used in the verification #### **Drug Discovery as Model Construction (cont.)** Figure 8: Generating models via attachment #### **Breaking Down Skeletons** #### Consider Ethyl Acetate ($C_4H_8O_2$): # **Corresponding Skeletal Diagrams** #### **Breakdown of Skeletons & Groups** **Legend** connectedness — incidence ----- mereology — #### Breaking Down Skeletons (cont.) ``` \forall x \ ethyl_acetate(x) \supset \ skeleton(x) ``` $$\forall x \; ethyl_acetate(x) \equiv \exists s_1 \exists s_2 \exists b_1 \; skeleton(x) \land \\ acetic_acid(s_1) \land \; ethanol(s_2) \land \\ mol(s_1, x) \land mol(s_2, x) \land \\ tether(s_1, s_2, b_1)$$ ``` \forall x \ ethyl_acetate(x) \equiv \exists g_1 \exists g_2 \exists g_3 \exists g_4 \exists b_1 \exists b_2 \exists b_3 \ skeleton(x) \land \\ methyl(g_1) \land carbonyl(g_2) \land ether(g_3) \land \\ ethane(g_4) \land mol(g_1, x) \land mol(g_2, x) \land \\ mol(g_3, x) \land mol(g_4, x) \land tether(g_1, g_2, b_1) \land \\ tether(g_2, g_3, b_2) \land tether(g_3, g_4, b_3) 19/28 ``` #### **Contribution Summary** Based on the graph-theoretic properties of the axioms and the verification, we have presented: - The process of drug design as the process of building first-order models of MoSt - New techniques and procedures to decompose and re-compose molecules and primitive functional groups ## 3. An Alternative Approach to Navigating Chemical Space #### Why Navigate Chemical Space? #### Why Navigate Chemical Space? - Chemical space is the property space spanned by all possible molecules and compounds, where its size is unknown - Have ontologies, along with a model-theoretic approach, been considered to aid in the search tasks? - We can use models of MoSt can be used to help narrow the search space Navigating Chemical Space \simeq Constraint Satisfaction Programming Queries against the knowledge base using MoSt helps us navigate the search space: a molecular description of \mathcal{M} is $\mathit{Th}(\mathcal{M})$ a molecular constraint is a sentence $\in \Sigma(\textit{MoSt})$ #### Model-Theoretic Search Techniques We can look at drug design in these contexts: 1. **Information retrieval**: querying a knowledge base (KB) of existing molecules via **entailment** $KB \models (molecular description or molecular constraint)$ Generating molecules: solving satisfiability queries using MoSt by building models that satisfy molecular constraints $T_{most} \cup (molecular constraint)$ is consistent $T_{most} \not\models \neg (molecular constraint)$ #### Using Queries to Find & Design New Molecules #### **Example: Information Retrieval (Entailment)** **Find** a molecule that contains at least one ring in the knowledge base that contains existing molecules. $$KB \models \exists x \ ring(x)$$ #### **Example: Satisfiability Problem (Model Construction)** **Design** a molecule that contains at least one ring. $$T_{most} \not\models \neg (\exists x \ ring(x))$$ #### Using Queries to Find & Design New Molecules #### **Example: Information Retrieval (Entailment)** **Find** a molecule in the knowledge base where all groups are tethered to at least one other group. $$KB \models \forall x \ group(x) \land \exists y \ group(y) \land tether(x, y) \land (x \neq y)$$ #### **Example: Satisfiability Problem (Model Construction)** **Design** a molecule where all groups are tethered to at least one other group. $$T_{most} \not\models \neg(\forall x \ group(x) \land \exists y \ group(y) \land tether(x, y) \land (x \neq y))$$ #### **Contribution Summary** Based on our earlier discussion of leveraging graph-theoretic properties of MoSt's models, we have: - Shown how we can navigate the chemical search space using the axioms of MoSt - Presented retrieval queries and satisfiability problems to narrow the search space based on molecular constraints #### **Open Questions & Future Work** #### **Open Questions** - Decidability of MoSt - Mereology on Skeletons #### **Future Work** - Molecular Reactions Ontology (MoRe): A Process Ontology - Reasoning About Molecules (RoMe): A Software Environment - Integration with (Cheminformatics) Software Tools & Query Languages #### **Summary of Contributions** We have provided an ontological foundation for navigating chemical space, with the following contributions: - 1. Design, Verification, and Validation of MoSt, satisfying the requirements for a molecular structure ontology - 2. New Techniques for Designing Molecules via Model Construction - 3. An Alternative Approach to Navigating Chemical Space #### Thank You! Any Questions? #### References & Additional Links #1 Charles River Laboratories, Inc. The Benefits of Outsourcing Drug Discovery to an End-to-End CRO. May 1, 2017. URL: https://www.criver.com/resources/benefits-outsourcing-drug-discovery-end-end-cro. Marcus A. Koch et al. "Charting biologically relevant chemical space: A structural classification of natural products (SCONP)". In: Proceedings of the National Academy of Sciences of the United States of America 102.48 (2005), pp. 17272–17277. DOI: 10.1073/pnas.0503647102. URL: http: //www.pnas.org/content/102/48/17272.abstract. #### References & Additional Links #2 National Center for Biotechnology Information. *PubChem Compound Database - Morphine (CID=5288826)*. 2015. URL: https: //pubchem.ncbi.nlm.nih.gov/compound/5288826. Jean-Louis Reymond and Mahendra Awale. "Exploring Chemical Space for Drug Discovery Using the Chemical Universe Database". In: ACS Chemical Neuroscience 3.9 (2012). PMID: 23019491, pp. 649-657. URL: https://doi.org/10.1021/cn3000422%20https://doi.org/10.1021/cn3000422.